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PREFACE

Nobel Prize–winning physicist Richard Feynman once noted that nature 
has a far, far better imagination than our own. Few things in the universe 
illustrate this observation better than the cell. A tiny sac of molecules 
capable of self-replication, this marvelous structure constitutes the fun-
damental building block of life. We are made of cells. Cells provide all 
the nutrients we consume. And the continuous activity of cells makes 
our planet habitable. To understand ourselves—and the world of which 
we are a part—we need to know something of the life of cells. Armed  
with such knowledge, we—as citizens and stewards of the global  
community—will be better equipped to make well-informed decisions 
about increasingly sophisticated issues, from climate change and food 
security to biomedical technologies and emerging epidemics.

In Essential Cell Biology we introduce readers to the fundamentals of 
cell biology. The Fifth Edition introduces powerful new techniques that  
allow us to examine cells and their components with unprecedented  
precision—such as super-resolution fluorescence microsocopy and 
cryoelectron microscopy—as well as the latest methods for DNA  
sequencing and gene editing. We discuss new thinking about how cells 
organize and encourage the chemical reactions that make life possible, 
and we review recent insights into human origins and genetics.

With each edition of Essential Cell Biology, its authors re-experience the 
joy of learning something new and surprising about cells. We are also 
reminded of how much we still don’t know. Many of the most fascinat-
ing questions in cell biology remain unanswered. How did cells arise on 
the early Earth, multiplying and diversifying through billions of years of 
evolution to fill every possible niche—from steaming vents on the ocean 
floor to frozen mountaintops—and, in doing so, transform our planet’s 
entire environment?  How is it possible for billions of cells to seamlessly 
cooperate and form large, multicellular organisms like ourselves? These 
are among the many challenges that remain for the next generation of 
cell biologists, some of whom will begin a wonderful, lifelong journey 
with this textbook.

Readers interested in learning how scientific inquisitiveness can fuel break-
throughs in our understanding of cell biology will enjoy the stories of dis-
covery presented in each chapter’s “How We Know” feature. Packed with  
experimental data and design, these narratives illustrate how biologists 
tackle important questions and how experimental results shape future 
ideas. In this edition, a new “How We Know” recounts the discoveries that 
first revealed how cells transform the energy locked in food molecules into 
the forms used to power the metabolic reactions on which life depends.

As in previous editions, the questions in the margins and at the end of 
each chapter not only test comprehension but also encourage careful 
thought and the application of newly acquired information to a broader 
biological context. Some of these questions have more than one valid 
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answer and others invite speculation. Answers to all of the questions  
are included at the back of the book, and many provide additional  
information or an alternative perspective on material presented in the 
main text.

More than 160 video clips, animations, atomic structures, and high- 
resolution micrographs complement the book and are available online. 
The movies are correlated with each chapter and callouts are highlighted 
in color. This supplemental material, created to clarify complex and critical  
concepts, highlights the intrinsic beauty of living cells.

For those who wish to probe even more deeply, Molecular Biology of 
the Cell, now in its sixth edition, offers a detailed account of the life of 
the cell. In addition, Molecular Biology of the Cell, Sixth Edition: A Prob-
lems Approach, by John Wilson and Tim Hunt, provides a gold mine of 
thought-provoking questions at all levels of difficulty. We have drawn 
upon this tour-de-force of experimental reasoning for some of the ques-
tions in Essential Cell Biology, and we are very grateful to its authors.

Every chapter of Essential Cell Biology is the product of a communal effort: 
both text and figures were revised and refined as drafts circulated from 
one author to another—many times over and back again! The numer-
ous other individuals who have helped bring this project to fruition are 
credited in the Acknowledgments that follow. Despite our best efforts, it 
is inevitable that errors will have crept into the book, and we encourage 
eagle-eyed readers who find mistakes to let us know, so that we can  
correct them in the next printing.
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We are also grateful to those readers who alerted us to errors that they 
found in the previous edition.

Working on this book has been a pleasure, in part due to the many people 
who contributed to its creation. Nigel Orme again worked closely with 
author Keith Roberts to generate the entire illustration program with his 
usual skill and care. He also produced all of the artwork for both cover 
and chapter openers as a respectful digital tribute to the “squeeze-bottle” 
paintings of the American artist Alden Mason (1919–2013). As in previ-
ous editions, Emma Jeffcock did a brilliant job in laying out the whole 
book and meticulously incorporated our endless corrections. We owe a 
special debt to Michael Morales, our editor at Garland Science, who co-
ordinated the whole enterprise. He oversaw the initial reviewing, worked 
closely with the authors on their chapters, took great care of us at numer-
ous writing meetings, and kept us organized and on schedule. He also  
orchestrated the wealth of online materials, including all video clips 
and animations. Our copyeditor, Jo Clayton, ensured that the text was  
stylistically consistent and error-free. At Garland, we also thank Jasmine 
Ribeaux, Georgina Lucas, and Adam Sendroff.

For welcoming our book to W. W. Norton and bringing this edition to 
print, we thank our editor Betsy Twitchell, as well as Roby Harrington,  
Drake McFeely, Julia Reidhead, and Ann Shin for their support. Taylere  
Peterson and Danny Vargo deserve thanks for their assistance as 
the book moved from Garland to Norton and through production. 
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Denise Schanck deserves extra special thanks for providing continuity  
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she attended all of our writing retreats and displayed great wisdom in 
orchestrating everything she touched.

Last but not least, we are grateful, yet again, to our colleagues and our 
families for their unflagging tolerance and support. We give our thanks 
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Smartwork5
Smartwork5 is an easy-to-use online assessment tool that helps stu-
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questions are written specifically for the book, are tagged to Bloom’s 
levels and learning objectives, and many include art and animations. 
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lowing Smartwork5 grades to report right to your LMS gradebook, while 
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Test Bank
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D. Vaughan, Harvard University Division of Continuing Education, 
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level, learning objective, book section, and difficulty level, allowing in-
structors to easily create meaningful exams. The Test Bank is available in 
ExamView and as downloadable PDFs from wwnorton.com/instructors.
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Animations and Videos
Streaming links give access to more than 130 videos and animations, 
bringing the concepts of cell biology to life. The movies are correlated 
with each chapter and callouts are highlighted in color.

Figure-integrated Lecture Outlines
All of the figures are integrated in PowerPoint, along with the section 
and concept headings from the text, to give instructors a head start  
creating lectures for their course.

Image Files
Every figure and photograph in the book is available for download in 
PowerPoint and JPG formats from wwnorton.com/instructors.

STUDENT RESOURCES
digital.wwnorton.com/ecb5

Animations and Videos
Streaming links give access to more than 130 videos and animations, 
bringing the concepts of cell biology to life. Animations can also be  
accessed via the ebook and in select Smartwork5 questions. The movies 
are correlated with each chapter and callouts are highlighted in color.

Student Site
Resources for self-study are available on the student site, including  
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Cells: The Fundamental  
Units of Life

UNITY AND DIVERSITY OF CELLS

CELLS UNDER THE MICROSCOPE

THE PROKARYOTIC CELL

THE EUKARYOTIC CELL

MODEL ORGANISMS

What does it mean to be living? Petunias, people, and pond scum are all 
alive; stones, sand, and summer breezes are not. But what are the fun-
damental properties that characterize living things and distinguish them 
from nonliving matter?

The answer hinges on a basic fact that is taken for granted now but 
marked a revolution in thinking when first established more than 175 
years ago. All living things (or organisms) are built from cells: small, 
membrane-enclosed units filled with a concentrated aqueous solution of 
chemicals and endowed with the extraordinary ability to create copies of 
themselves by growing and then dividing in two. The simplest forms of 
life are solitary cells. Higher organisms, including ourselves, are commu-
nities of cells derived by growth and division from a single founder cell. 
Every animal or plant is a vast colony of individual cells, each of which 
performs a specialized function that is integrated by intricate systems of 
cell-to-cell communication.

Cells, therefore, are the fundamental units of life. Thus it is to cell biol-
ogy—the study of cells and their structure, function, and behavior—that 
we look for an answer to the question of what life is and how it works. 
With a deeper understanding of cells, we can begin to tackle the grand 
historical problems of life on Earth: its mysterious origins, its stunning 
diversity produced by billions of years of evolution, and its invasion of 
every conceivable habitat on the planet. At the same time, cell biology 
can provide us with answers to the questions we have about ourselves: 
Where did we come from? How do we develop from a single fertilized egg 
cell? How is each of us similar to—yet different from—everyone else on 
Earth? Why do we get sick, grow old, and die?

CHAPTER ONE 1
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In this chapter, we introduce the concept of cells: what they are, where 
they come from, and how we have learned so much about them. We 
begin by looking at the great variety of forms that cells can adopt, and 
we take a preliminary glimpse at the chemical machinery that all cells 
have in common. We then consider how cells are made visible under 
the microscope and what we see when we peer inside them. Finally, we 
discuss how we can exploit the similarities of living things to achieve 
a coherent understanding of all forms of life on Earth—from the tiniest 
bacterium to the mightiest oak. 

UNITY AND DIVERSITY OF CELLS
Biologists estimate that there may be up to 100 million distinct species 
of living things on our planet—organisms as different as a dolphin and 
a rose or a bacterium and a butterfly. Cells, too, differ vastly in form and 
function. Animal cells differ from those in a plant, and even cells within a 
single multicellular organism can differ wildly in appearance and activity. 
Yet despite these differences, all cells share a fundamental chemistry and 
other common features. 

In this section, we take stock of some of the similarities and differences 
among cells, and we discuss how all present-day cells appear to have 
evolved from a common ancestor. 

Cells Vary Enormously in Appearance and Function
When comparing one cell and another, one of the most obvious places 
to start is with size. A bacterial cell—say a Lactobacillus in a piece of 
cheese—is a few micrometers, or μm, in length. That’s about 25 times 
smaller than the width of a human hair. At the other extreme, a frog 
egg—which is also a single cell—has a diameter of about 1 millimeter 
(mm). If we scaled them up to make the Lactobacillus the size of a person, 
the frog egg would be half a mile high.

Cells vary just as widely in their shape (Figure 1–1). A typical nerve cell in 
your brain, for example, is enormously extended: it sends out its electri-
cal signals along a single, fine protrusion (an axon) that is 10,000 times 
longer than it is thick, and the cell receives signals from other nerve cells 
through a collection of shorter extensions that sprout from its body like 
the branches of a tree (see Figure 1–1A). A pond-dwelling Paramecium, 
on the other hand, is shaped like a submarine and is covered with thou-
sands of cilia—hairlike projections whose sinuous, coordinated beating 
sweeps the cell forward, rotating as it goes (Figure 1–1B). A cell in the 
surface layer of a plant is squat and immobile, surrounded by a rigid box 
of cellulose with an outer waterproof coating of wax (Figure 1−1C). A 
macrophage in the body of an animal, by contrast, crawls through tis-
sues, constantly pouring itself into new shapes, as it searches for and 
engulfs debris, foreign microorganisms, and dead or dying cells (Figure 
1−1D). A fission yeast is shaped like a rod (Figure 1−1E), whereas a bud-
ding yeast is delightfully spherical (see Figure 1−14). And so on.

Cells are also enormously diverse in their chemical requirements. Some 
require oxygen to live; for others the gas is deadly. Some cells consume 
little more than carbon dioxide (CO2), sunlight, and water as their raw 
materials; others need a complex mixture of molecules produced by 
other cells. 

These differences in size, shape, and chemical requirements often reflect 
differences in cell function. Some cells are specialized factories for the 
production of particular substances, such as hormones, starch, fat, latex, 
or pigments. Others, like muscle cells, are engines that burn fuel to do 
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mechanical work. Still others are electricity generators, like the modified 
muscle cells in the electric eel. 

Some modifications specialize a cell so much that the cell ceases to pro-
liferate, thus producing no descendants. Such specialization would be 
senseless for a cell that lived a solitary life. In a multicellular organism, 
however, there is a division of labor among cells, allowing some cells to 
become specialized to an extreme degree for particular tasks and leaving 
them dependent on their fellow cells for many basic requirements. Even 
the most basic need of all, that of passing on the genetic instructions of 
the organism to the next generation, is delegated to specialists—the egg 
and the sperm.

Living Cells All Have a Similar Basic Chemistry
Despite the extraordinary diversity of plants and animals, people have 
recognized from time immemorial that these organisms have something 
in common, something that entitles them all to be called living things. 
But while it seemed easy enough to recognize life, it was remarkably dif-
ficult to say in what sense all living things were alike. Textbooks had to 
settle for defining life in abstract general terms related to growth, repro-
duction, and an ability to actively alter their behavior in response to the 
environment.

The discoveries of biochemists and molecular biologists have provided 
an elegant solution to this awkward situation. Although the cells of all 
living things are enormously varied when viewed from the outside, they 
are fundamentally similar inside. We now know that cells resemble one 
another to an astonishing degree in the details of their chemistry. They are 
composed of the same sorts of molecules, which participate in the same 
types of chemical reactions (discussed in Chapter 2). In all organisms, 
genetic information—in the form of genes—is carried in DNA molecules. 
This information is written in the same chemical code, constructed out 
of the same chemical building blocks, interpreted by essentially the same 
chemical machinery, and replicated in the same way when a cell or 
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Figure 1–1 Cells come in a variety of shapes and sizes. Note the very different scales of these micrographs. (A) Drawing of a single 
nerve cell from a mammalian brain. This cell has a single, unbranched extension (axon), projecting toward the top of the image, through 
which it sends electrical signals to other nerve cells, and it possesses a huge branching tree of projections (dendrites) through which it 
receives signals from as many as 100,000 other nerve cells. (B) Paramecium. This protozoan—a single giant cell—swims by means of the 
beating cilia that cover its surface. (C) The surface of a snapdragon flower petal displays an orderly array of tightly packed cells.  
(D) A macrophage spreads itself out as it patrols animal tissues in search of invading microorganisms. (E) A fission yeast is caught in the 
act of dividing in two. The medial septum (stained red with a fluorescent dye) is forming a wall between the two nuclei (also stained red ) 
that have been separated into the two daughter cells; in this image, the cells’ membranes are stained with a green fluorescent dye.  
(A, Herederos de Santiago Ramón y Cajal, 1899; B, courtesy of Anne Aubusson Fleury, Michel Laurent, and André Adoutte; C, courtesy 
of Kim Findlay; D, from P.J. Hanley et al., Proc. Natl Acad. Sci. USA 107:12145–12150, 2010. With permission from National Academy of 
Sciences; E, courtesy of Janos Demeter and Shelley Sazer.)

QUESTION 1–1

“Life” is easy to recognize but 
difficult to define. According to one 
popular biology text, living things:
1.  Are highly organized compared 
to natural inanimate objects.
2.  Display homeostasis, maintaining 
a relatively constant internal 
environment.
3.  Reproduce themselves.
4.  Grow and develop from simple 
beginnings.
5.  Take energy and matter from the 
environment and transform it.
6.  Respond to stimuli.
7.  Show adaptation to their 
environment.
Score a person, a vacuum cleaner, 
and a potato with respect to these 
characteristics.

Unity and Diversity of Cells
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organism reproduces. Thus, in every cell, long polymer chains of DNA 
are made from the same set of four monomers, called nucleotides, strung 
together in different sequences like the letters of an alphabet. The infor-
mation encoded in these DNA molecules is read out, or transcribed, into 
a related set of polynucleotides called RNA. Although some of these RNA 
molecules have their own regulatory, structural, or chemical activities, 
most are translated into a different type of polymer called a protein. This 
flow of information—from DNA to RNA to protein—is so fundamental to 
life that it is referred to as the central dogma (Figure 1−2). 

The appearance and behavior of a cell are dictated largely by its pro-
tein molecules, which serve as structural supports, chemical catalysts, 
molecular motors, and much more. Proteins are built from amino acids, 
and all organisms use the same set of 20 amino acids to make their pro-
teins. But the amino acids are linked in different sequences, giving each 
type of protein molecule a different three-dimensional shape, or confor-
mation, just as different sequences of letters spell different words. In this 
way, the same basic biochemical machinery has served to generate the 
whole gamut of life on Earth (Figure 1–3).

Living Cells Are Self-Replicating Collections of Catalysts
One of the most commonly cited properties of living things is their abil-
ity to reproduce. For cells, the process involves duplicating their genetic 
material and other components and then dividing in two—producing 
a pair of daughter cells that are themselves capable of undergoing the 
same cycle of replication.  

It is the special relationship between DNA, RNA, and proteins—as 
outlined in the central dogma (see Figure 1–2)—that makes this self-
replication possible. DNA encodes information that ultimately directs 
the assembly of proteins: the sequence of nucleotides in a molecule of 
DNA dictates the sequence of amino acids in a protein. Proteins, in turn, 
catalyze the replication of DNA and the transcription of RNA, and they 
participate in the translation of RNA into proteins. This feedback loop 
between proteins and polynucleotides underlies the self-reproducing 
behavior of living things (Figure 1−4). We discuss this complex inter-
dependence between DNA, RNA, and proteins in detail in Chapters 5 
through 8.  

In addition to their roles in polynucleotide and protein synthesis, proteins 
also catalyze the many other chemical reactions that keep the self-repli-
cating system shown in Figure 1–4 running. A living cell can break down 
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RNA
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protein synthesis
TRANSLATION

RNA synthesis
TRANSCRIPTIONnucleotides

DNA synthesis
REPLICATION
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amino acids

Figure 1–2 In all living cells, genetic 
information flows from DNA to RNA 
(transcription) and from RNA to protein 
(translation)—an arrangement known 
as the central dogma. The sequence of 
nucleotides in a particular segment of 
DNA (a gene) is transcribed into an RNA 
molecule, which can then be translated into 
the linear sequence of amino acids of a 
protein. Only a small part of the gene, RNA, 
and protein is shown.

Figure 1–3 All living organisms are constructed from cells. (A) A colony of bacteria, (B) a butterfly, (C) a rose, and (D) a dolphin 
are all made of cells that have a fundamentally similar chemistry and operate according to the same basic principles. (A, courtesy 
of Janice Carr; D, courtesy of Jonathan Gordon, IFAW.)

(A)
2 µm

(B) (C) (D)

ECB5 e1.03/1.03
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nutrients and use the products to both make the building blocks needed 
to produce polynucleotides, proteins, and other cell constituents and to 
generate the energy needed to power these biosynthetic processes. We 
discuss these vital metabolic reactions in detail in Chapters 3 and 13.

Only living cells can perform these astonishing feats of self-replication. 
Viruses also contain information in the form of DNA or RNA, but they do 
not have the ability to reproduce by their own efforts. Instead, they para-
sitize the reproductive machinery of the cells that they invade to make 
copies of themselves. Thus, viruses are not truly considered living. They 
are merely chemical zombies: inert and inactive outside their host cells 
but able to exert a malign control once they gain entry. We review the life 
cycle of viruses in Chapter 9.

All Living Cells Have Apparently Evolved from the Same 
Ancestral Cell
When a cell replicates its DNA in preparation for cell division, the copy-
ing is not always perfect. On occasion, the instructions are corrupted by 
mutations that change the sequence of nucleotides in the DNA. For this 
reason, daughter cells are not necessarily exact replicas of their parent. 

Mutations can create offspring that are changed for the worse (in that 
they are less able to survive and reproduce), changed for the better (in 
that they are better able to survive and reproduce), or changed in a neutral 
way (in that they are genetically different but equally viable). The struggle 
for survival eliminates the first, favors the second, and tolerates the third. 
The genes of the next generation will be the genes of the survivors. 

For many organisms, the pattern of heredity may be complicated by sex-
ual reproduction, in which two cells of the same species fuse, pooling 
their DNA. The genetic cards are then shuffled, re-dealt, and distributed 
in new combinations to the next generation, to be tested again for their 
ability to promote survival and reproduction. 

These simple principles of genetic change and selection, applied repeat-
edly over billions of cell generations, are the basis of evolution—the 
process by which living species become gradually modified and adapted 
to their environment in more and more sophisticated ways. Evolution 
offers a startling but compelling explanation of why present-day cells 
are so similar in their fundamentals: they have all inherited their genetic 
instructions from the same common ancestral cell. It is estimated that 
this cell existed between 3.5 and 3.8 billion years ago, and we must sup-
pose that it contained a prototype of the universal machinery of all life on 
Earth today. Through a very long process of mutation and natural selec-
tion, the descendants of this ancestral cell have gradually diverged to fill 
every habitat on Earth with organisms that exploit the potential of the 
machinery in a seemingly endless variety of ways.

Figure 1–4 Life is an autocatalytic 
process. DNA and RNA provide the 
sequence information (green arrows) that 
is used to produce proteins and to copy 
themselves. Proteins, in turn, provide the 
catalytic activity (red arrows) needed to 
synthesize DNA, RNA, and themselves. 
Together, these feedback loops create the 
self-replicating system that endows living 
cells with their ability to reproduce.

QUESTION 1–2

Mutations are mistakes in the DNA 
that change the genetic plan from 
that of the previous generation. 
Imagine a shoe factory. Would you 
expect mistakes (i.e., unintentional 
changes) in copying the shoe 
design to lead to improvements in 
the shoes produced? Explain your 
answer.

Unity and Diversity of Cells

DNA and RNA

proteins

SEQUENCE
INFORMATION

CATALYTIC
ACTIVITY

nucleotides

amino acids

ECB5 n1.102-1.4
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Genes Provide Instructions for the Form, Function, and 
Behavior of Cells and Organisms
A cell’s genome—that is, the entire sequence of nucleotides in an organ-
ism’s DNA—provides a genetic program that instructs a cell how to 
behave. For the cells of plant and animal embryos, the genome directs 
the growth and development of an adult organism with hundreds of dif-
ferent cell types. Within an individual plant or animal, these cells can be 
extraordinarily varied, as we discuss in detail in Chapter 20. Fat cells, skin 
cells, bone cells, and nerve cells seem as dissimilar as any cells could 
be. Yet all these differentiated cell types are generated during embryonic 
development from a single fertilized egg cell, and they contain identi-
cal copies of the DNA of the species. Their varied characters stem from 
the way that individual cells use their genetic instructions. Different cells 
express different genes: that is, they use their genes to produce some 
RNAs and proteins and not others, depending on their internal state and 
on cues that they and their ancestor cells have received from their sur-
roundings—mainly signals from other cells in the organism.

The DNA, therefore, is not just a shopping list specifying the molecules 
that every cell must make, and a cell is not just an assembly of all the 
items on the list. Each cell is capable of carrying out a variety of biologi-
cal tasks, depending on its environment and its history, and it selectively 
uses the information encoded in its DNA to guide its activities. Later in 
this book, we will see in detail how DNA defines both the parts list of the 
cell and the rules that decide when and where these parts are to be made.

CELLS UNDER THE MICROSCOPE

Today, we have access to many powerful technologies for deciphering 
the principles that govern the structure and activity of the cell. But cell 
biology started without these modern tools. The earliest cell biologists 
began by simply looking at tissues and cells, and later breaking them 
open or slicing them up, attempting to view their contents. What they 
saw was to them profoundly baffling—a collection of tiny objects whose 
relationship to the properties of living matter seemed an impenetrable 
mystery. Nevertheless, this type of visual investigation was the first step 
toward understanding tissues and cells, and it remains essential today in 
the study of cell biology.

Cells were not made visible until the seventeenth century, when the 
microscope was invented. For hundreds of years afterward, all that 
was known about cells was discovered using this instrument. Light 
microscopes use visible light to illuminate specimens, and they allowed 
biologists to see for the first time the intricate structure that underpins all 
living things. 

Although these instruments now incorporate many sophisticated 
improvements, the properties of light—specifically its wavelength—limit 
the fineness of detail these microscopes reveal. Electron microscopes, 
invented in the 1930s, go beyond this limit by using beams of electrons 
instead of beams of light as the source of illumination; because electrons 
have a much shorter wavelength, these instruments greatly extend our 
ability to see the fine details of cells and even render some of the larger 
molecules visible individually. 

In this section, we describe various forms of light and electron micro-
scopy. These vital tools in the modern cell biology laboratory continue 
to improve, revealing new and sometimes surprising details about how 
cells are built and how they operate.
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The Invention of the Light Microscope Led to the 
Discovery of Cells
By the seventeenth century, glass lenses were powerful enough to permit 
the detection of structures invisible to the naked eye. Using an instrument 
equipped with such a lens, Robert Hooke examined a piece of cork and 
in 1665 reported to the Royal Society of London that the cork was com-
posed of a mass of minute chambers. He called these chambers “cells,” 
based on their resemblance to the simple rooms occupied by monks in a 
monastery. The name stuck, even though the structures Hooke described 
were actually the cell walls that remained after the plant cells living 
inside them had died. Later, Hooke and his Dutch contemporary Antoni 
van Leeuwenhoek were able to observe living cells, seeing for the first 
time a world teeming with motile microscopic organisms.

For almost 200 years, such instruments—the first light microscopes—
remained exotic devices, available only to a few wealthy individuals. It 
was not until the nineteenth century that microscopes began to be widely 
used to look at cells. The emergence of cell biology as a distinct science 
was a gradual process to which many individuals contributed, but its offi-
cial birth is generally said to have been signaled by two publications: one 
by the botanist Matthias Schleiden in 1838 and the other by the zoolo-
gist Theodor Schwann in 1839. In these papers, Schleiden and Schwann 
documented the results of a systematic investigation of plant and animal 
tissues with the light microscope, showing that cells were the universal 
building blocks of all living tissues. Their work, and that of other nine-
teenth-century microscopists, slowly led to the realization that all living 
cells are formed by the growth and division of existing cells—a principle 
sometimes referred to as the cell theory (Figure 1–5). The implication that 
living organisms do not arise spontaneously but can be generated only 
from existing organisms was hotly contested, but it was finally confirmed 

50 µm

(A)

(B)

Figure 1–5 New cells form by growth 
and division of existing cells. (A) In 1880, 
Eduard Strasburger drew a living plant cell 
(a hair cell from a Tradescantia flower), which 
he observed dividing in two over a period 
of 2.5 hours. Inside the cell, DNA (black) can 
be seen condensing into chromosomes, 
which are then segregated into the two 
daughter cells. (B) A comparable living plant 
cell photographed through a modern light 
microscope. (B, from P.K. Hepler, J. Cell Biol. 
100:1363–1368, 1985. With permission from 
Rockefeller University Press.)

Cells Under the Microscope
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in the 1860s by an elegant set of experiments performed by Louis Pasteur 
(see Question 1–3).

The principle that cells are generated only from preexisting cells and 
inherit their characteristics from them underlies all of biology and gives 
the subject a unique flavor: in biology, questions about the present are 
inescapably linked to conditions in the past. To understand why present-
day cells and organisms behave as they do, we need to understand their 
history, all the way back to the misty origins of the first cells on Earth. 
Charles Darwin provided the key insight that makes this history com-
prehensible. His theory of evolution, published in 1859, explains how 
random variation and natural selection gave rise to diversity among 
organisms that share a common ancestry. When combined with the cell 
theory, the theory of evolution leads us to view all life, from its beginnings 
to the present day, as one vast family tree of individual cells. Although 
this book is primarily about how cells work today, we will encounter the 
theme of evolution again and again.

Light Microscopes Reveal Some of a Cell’s Components
If a very thin slice is cut from a suitable plant or animal tissue and viewed 
using a light microscope, it is immediately apparent that the tissue is 
divided into thousands of small cells. In some cases, the cells are closely 
packed; in others, they are separated from one another by an extracellular 
matrix—a dense material often made of protein fibers embedded in a gel 
of long sugar chains. Each cell is typically about 5–20 μm in diameter. If 
care has been taken to keep the specimen alive, particles will be seen 
moving around inside its individual cells. On occasion, a cell may even 
be seen slowly changing shape and dividing into two (see Figure 1−5 and 
Movie 1.1).

Distinguishing the internal structure of a cell is difficult, not only because 
the parts are small, but also because they are transparent and mostly 
colorless. One way around the problem is to stain cells with dyes that 
color particular components differently (Figure 1–6). Alternatively, one 
can exploit the fact that cell components differ slightly from one another 
in refractive index, just as glass differs in refractive index from water, 
causing light rays to be deflected as they pass from the one medium into 

(B)(A)
50 µm 50 µm

Figure 1–6 Cells form tissues in plants 
and animals. (A) Cells in the root tip of  
a fern. The DNA-containing nuclei are 
stained red, and each cell is surrounded  
by a thin cell wall (light blue). The red  
nuclei of densely packed cells are seen  
at the bottom corners of the preparation.  
(B) Cells in the crypts of the small intestine. 
Each crypt appears in this cross section as 
a ring of closely packed cells (with nuclei 
stained blue). The ring is surrounded by 
extracellular matrix, which contains the 
scattered cells that produced most of the 
matrix components. (A, courtesy of James 
Mauseth; B, Jose Luis Calvo/Shutterstock.)

QUESTION 1–3

You have embarked on an ambitious 
research project: to create life in a 
test tube. You boil up a rich mixture 
of yeast extract and amino acids in a 
flask, along with a sprinkling of the 
inorganic salts known to be essential 
for life. You seal the flask and allow 
it to cool. After several months, 
the liquid is as clear as ever, and 
there are no signs of life. A friend 
suggests that excluding the air was a 
mistake, since most life as we know 
it requires oxygen. You repeat the 
experiment, but this time you leave 
the flask open to the atmosphere. 
To your great delight, the liquid 
becomes cloudy after a few days, 
and, under the microscope, you 
see beautiful small cells that are 
clearly growing and dividing. Does 
this experiment prove that you 
managed to generate a novel life-
form? How might you redesign your 
experiment to allow air into the 
flask, yet eliminate the possibility 
that contamination by airborne 
microorganisms is the explanation 
for the results? (For a ready-
made answer, look up the classic 
experiments of Louis Pasteur.)
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the other. The small differences in refractive index can be made visible by 
specialized optical techniques, and the resulting images can be enhanced 
further by electronic processing (Figure 1−7A).

As shown in Figures 1–6B and 1–7A, typical animal cells visualized in 
these ways have a distinct anatomy. They have a sharply defined bound-
ary, indicating the presence of an enclosing membrane, the plasma 
membrane. A large, round structure, the nucleus, is prominent near the 
middle of the cell. Around the nucleus and filling the cell’s interior is the 
cytoplasm, a transparent substance crammed with what seems at first to 
be a jumble of miscellaneous objects. With a good light microscope, one 
can begin to distinguish and classify some of the specific components in 
the cytoplasm, but structures smaller than about 0.2 μm—about half the 
wavelength of visible light—cannot normally be resolved; points closer 
than this are not distinguishable and appear as a single blur.

In recent years, however, new types of light microscope called  
fluorescence microscopes have been developed that use sophisticated 
methods of illumination and electronic image processing to see fluores-
cently labeled cell components in much finer detail (Figure 1–7B). The 
most recent super-resolution fluorescence microscopes, for example, can 
push the limits of resolution down even further, to about 20 nanometers 
(nm). That is the size of a single ribosome, a large macromolecular com-
plex in which RNAs are translated into proteins. These super-resolution 
techniques are described further in Panel 1−1 (pp. 12−13).

The Fine Structure of a Cell Is Revealed by Electron 
Microscopy
For the highest magnification and best resolution, one must turn to an 
electron microscope, which can reveal details down to a few nano- 
meters. Preparing cell samples for the electron microscope is a painstak-
ing process. Even for light microscopy, a tissue often has to be fixed (that 
is, preserved by pickling in a reactive chemical solution), supported by 
embedding in a solid wax or resin, cut, or sectioned, into thin slices, and 
stained before it is viewed. (The tissues in Figure 1−6 were prepared in 

cytoplasm plasma membrane nucleus

40 µm 10 µm 
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Figure 1–7 Some of the internal 
structures of a cell can be seen with a 
light microscope. (A) A cell taken from 
human skin and grown in culture was 
photographed through a light microscope 
using interference-contrast optics 
(described in Panel 1–1, pp. 12–13). The 
nucleus is especially prominent, as is the 
small, round nucleolus within it (discussed  
in Chapter 5 and see Panel 1−2, p. 25).  
(B) A pigment cell from a frog, stained with 
fluorescent dyes and viewed with a confocal 
fluorescence microscope (discussed in 
Panel 1–1). The nucleus is shown in purple, 
the pigment granules in red, and the 
microtubules—a class of protein filaments 
in the cytoplasm—in green. (A, courtesy of 
Casey Cunningham; B, courtesy of Stephen 
Rogers and the Imaging Technology Group 
of the Beckman Institute, University of 
Illinois, Urbana.)

Cells Under the Microscope




